

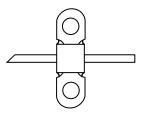
# 2-8 GHz Medium Power Gallium Arsenide FET

# Technical Data

#### ATF-45101

#### **Features**

- High Output Power:  $29.0~\mathrm{dBm}\,\mathrm{Typical}\,\mathrm{P}_{1\,\mathrm{dB}}\,\mathrm{at}\,4~\mathrm{GHz}$
- High Gain at 1dB
   Compression:
   10.0 dBTypical G<sub>1dB</sub> at 4 GHz
- **High Power Efficiency:** 38% Typical at 4 GHz
- Hermetic Metal-Ceramic Stripline Package


### **Description**

The ATF-45101 is a gallium arsenide Schottky-barrier-gate field effect transistor designed for medium power, linear amplification in the 2 to 8 GHz frequency

range. This nominally 0.5 micron gate length GaAs FET is an interdigitated four-cell structure using airbridge interconnects between drain fingers. Total gate periphery is 2.5 millimeters. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

This device is suitable for applications in space, airborne, military ground and shipboard, and commercial environments. It is supplied in a hermetic high reliability package with low parasitic reactance and minimum thermal resistance.

## 100 mil Flange Package



## Electrical Specifications, $T_A = 25$ °C

| Symbol                | <b>Parameters and Test Conditions</b>                                     |                                                  | Units | Min. | Тур.         | Max. |
|-----------------------|---------------------------------------------------------------------------|--------------------------------------------------|-------|------|--------------|------|
| P <sub>1 dB</sub>     | Power Output @ 1 dB Gain Compression: $V_{DS} = 9 \ V, I_{DS} = 250 \ mA$ | $f = 4.0 \mathrm{GHz}$<br>$f = 8.0 \mathrm{GHz}$ | dBm   | 28.0 | 29.0<br>28.0 |      |
| $G_{1 dB}$            | 1 dB Compressed Gain: $V_{DS} = 9  \text{V}, I_{DS} = 250  \text{mA}$     | $f = 4.0 \mathrm{GHz}$<br>$f = 8.0 \mathrm{GHz}$ | dB    | 9.0  | 10.0<br>4.0  |      |
| $\eta_{\mathrm{add}}$ | Efficiency @ $P_{1dB}$ : $V_{DS} = 9 V$ , $I_{DS} = 250 \text{ mA}$       | f = 4.0  GHz                                     | %     |      | 38           |      |
| $g_{\rm m}$           | Transconductance: $V_{DS} = 2.5 \text{ V}, I_{DS} = 250 \text{ mA}$       |                                                  | mmho  |      | 200          |      |
| $I_{\mathrm{DSS}}$    | Saturated Drain Current: $V_{DS} = 1.75 \text{ V}, V_{GS} = 0 \text{ V}$  |                                                  | mA    | 400  | 600          | 800  |
| $V_{P}$               | Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}, I_{DS} = 12.5 \text{ mA}$     |                                                  | V     | -5.4 | -4.0         | -2.0 |

5965-8736E 5-92

**ATF-45101 Absolute Maximum Ratings** 

| Symbol            | Parameter               | Units | Absolute<br>Maximum <sup>[1]</sup> |
|-------------------|-------------------------|-------|------------------------------------|
| $V_{\mathrm{DS}}$ | Drain-Source Voltage    | V     | +14                                |
| $V_{GS}$          | Gate-Source Voltage     | V     | -7                                 |
| $V_{ m GD}$       | Gate-Drain Voltage      | V     | -16                                |
| $I_{\mathrm{DS}}$ | Drain Current           | mA    | $I_{\mathrm{DSS}}$                 |
| P <sub>T</sub>    | Power Dissipation [2,3] | W     | 3.6                                |
| $T_{\mathrm{CH}}$ | Channel Temperature     | °C    | 175                                |
| $T_{STG}$         | Storage Temperature     | °C    | -65 to +175                        |

| Thermal Resistance:         | $\theta_{\rm ic} = 42$ °C/W; $T_{\rm CH} = 150$ °C |  |  |  |  |
|-----------------------------|----------------------------------------------------|--|--|--|--|
| Liquid Crystal Measurement: | 1 μmSpotSize <sup>[4]</sup>                        |  |  |  |  |

#### **Notes:**

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2.  $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 24 mW/°C for  $T_{CASE} > 24$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of  $\theta_{jc}$  than do alternate methods. See MEASUREMENTS section for more information.

# ATF-45101 Typical Performance, $T_A = 25^{\circ}C$

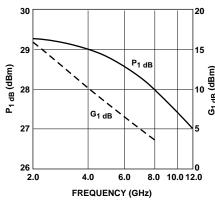



Figure 1. Power Output @ 1 dB Gain Compression and 1 dB Compressed Gain vs. Frequency.  $V_{DS}=9V,\,I_{DS}=250\ mA.$ 

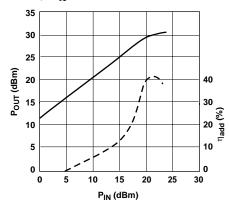
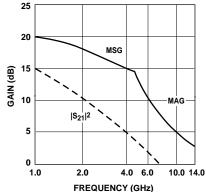
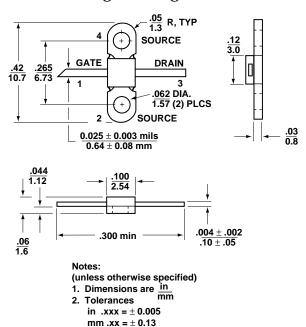




Figure 2. Output Power and Power Added Efficiency vs. Input Power.  $V_{DS}=9\ V,\ I_{DS}=250\ mA,\ f=4.0\ GHz.$ 




 $\label{eq:figure 3.} \begin{array}{l} Figure \ 3. \ Insertion \ Power \ Gain, \\ Maximum \ Available \ Gain \ and \\ Maximum \ Stable \ Gain \ vs. \ Frequency. \\ V_{DS} = 9 \ V, \ I_{DS} = 250 \ mA. \end{array}$ 

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 \ C, V_{DS} = 9 \ V, I_{DS} = 250 \ mA$ 

| Freq. | 1    | S <sub>11</sub> |      | $S_{21}$ |             | $\mathbf{S}_{12}$ |      | $\mathbf{S}_{22}$ |      |      |
|-------|------|-----------------|------|----------|-------------|-------------------|------|-------------------|------|------|
| GHz   | Mag. | Ang.            | dB   | Mag.     | Ang.        | dB                | Mag. | Ang.              | Mag. | Ang. |
| 1.0   | .89  | -88             | 14.9 | 5.54     | 119         | -26.2             | .049 | 43                | .31  | -63  |
| 2.0   | .83  | -135            | 10.8 | 3.48     | 82          | -26.0             | .050 | 18                | .33  | -108 |
| 3.0   | .81  | -158            | 7.6  | 2.40     | 58          | -25.8             | .051 | 7                 | .39  | -129 |
| 4.0   | .84  | -174            | 5.4  | 1.86     | 38          | -25.5             | .053 | 3                 | .46  | -144 |
| 5.0   | .82  | -170            | 3.8  | 1.55     | 18          | -25.2             | .055 | <b>-</b> 2        | .50  | -154 |
| 6.0   | .81  | 152             | 2.6  | 1.36     | <b>-</b> 2  | -24.4             | .060 | -8                | .52  | -168 |
| 7.0   | .81  | 133             | 1.2  | 1.15     | <b>-</b> 25 | -23.9             | .064 | -15               | .55  | 173  |
| 8.0   | .81  | 122             | -0.3 | .97      | <b>-</b> 42 | -23.5             | .067 | -20               | .59  | 154  |
| 9.0   | .80  | 113             | -1.8 | .81      | -60         | -22.6             | .074 | <b>-</b> 31       | .64  | 137  |
| 10.0  | .79  | 107             | -3.2 | .69      | <b>-7</b> 3 | -22.0             | .079 | <b>-4</b> 0       | .68  | 123  |
| 11.0  | .77  | 94              | -4.6 | .59      | <b>-</b> 91 | -21.5             | .084 | <b>-</b> 45       | .72  | 113  |
| 12.0  | .73  | 82              | -5.8 | .51      | -106        | -20.3             | .097 | -55               | .76  | 99   |
| 13.0  | .68  | 69              | -6.7 | .46      | -123        | -18.3             | .121 | -63               | .78  | 89   |
| 14.0  | .64  | 56              | -7.1 | .44      | -137        | -15.9             | .161 | -79               | .80  | 79   |

A model for this device is available in the DEVICE MODELS section.

# 100 mil Flange Package Dimensions



Package marking code is 451